If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-4r-93=0
a = 1; b = -4; c = -93;
Δ = b2-4ac
Δ = -42-4·1·(-93)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{97}}{2*1}=\frac{4-2\sqrt{97}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{97}}{2*1}=\frac{4+2\sqrt{97}}{2} $
| 7x+7+6x-9=90 | | x+22=1/2(x+33) | | 18x+3+7x-3=180 | | 15-15=6y | | 4n–1=15 | | 3/5z–¼=17/20 | | 13n=n+24 | | v^2+8v-33=0 | | 24x-36=84 | | 9q^2+14=Q | | 40x+160=840 | | 2x+13+x+40=90 | | 5z/3+3=4 | | 1/2(6x-4)=5x+10+2x | | (x+14)+(2x+28)=180 | | |8x|=4 | | (x+50)+(4x+30)=180 | | g÷ 9/10=2/3 | | 2(3m+6)=3(4+2m) | | -2(3m+6)=3(4+2m | | -2(3m+6=3(4+2m) | | 2x+13+1x+40=90 | | 2x=13+1x+40=90 | | 6c-15=5c-15 | | 0.3r=28 | | -4(3x+2)=(-4x+5) | | 2x=13+1x+40 | | 3x²+7x-11=0 | | 9h+21=-699 | | 30-(2x)=88 | | 9b+21=399 | | 41/6+z=124/6 |